以下文章摘自labuladong的算法小抄

并查集(Union-Find)算法

读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:

LeetCode 力扣 难度
130. Surrounded Regionsopen in new window 130. 被围绕的区域open in new window 🟠
323. Number of Connected Components in an Undirected Graphopen in new window🔒 323. 无向图中连通分量的数目open in new window🔒 🟠
990. Satisfiability of Equality Equationsopen in new window 990. 等式方程的可满足性open in new window 🟠

并查集(Union-Find)算法是一个专门针对「动态连通性」的算法,我之前写过两次,因为这个算法的考察频率高,而且它也是最小生成树算法的前置知识,所以我整合了本文,争取一篇文章把这个算法讲明白。

首先,从什么是图的动态连通性开始讲。

#一、动态连通性

简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:

img

现在我们的 Union-Find 算法主要需要实现这两个 API:

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

1
2
3
4
5
6
7
8
class UF {
    /* 将 p 和 q 连接 */
    public void union(int p, int q);
    /* 判断 p 和 q 是否连通 */
    public boolean connected(int p, int q);
    /* 返回图中有多少个连通分量 */
    public int count();
}

这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:

1、自反性:节点 pp 是连通的。

2、对称性:如果节点 pq 连通,那么 qp 也连通。

3、传递性:如果节点 pq 连通,qr 连通,那么 pr 也连通。

比如说之前那幅图,0~9 任意两个不同的点都不连通,调用 connected 都会返回 false,连通分量为 10 个。

如果现在调用 union(0, 1),那么 0 和 1 被连通,连通分量降为 9 个。

再调用 union(1, 2),这时 0,1,2 都被连通,调用 connected(0, 2) 也会返回 true,连通分量变为 8 个。

img

判断这种「等价关系」非常实用,比如说编译器判断同一个变量的不同引用,比如社交网络中的朋友圈计算等等。

这样,你应该大概明白什么是动态连通性了,Union-Find 算法的关键就在于 unionconnected 函数的效率。那么用什么模型来表示这幅图的连通状态呢?用什么数据结构来实现代码呢?

#二、基本思路

注意我刚才把「模型」和具体的「数据结构」分开说,这么做是有原因的。因为我们使用森林(若干棵树)来表示图的动态连通性,用数组来具体实现这个森林。

怎么用森林来表示连通性呢?我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:

img

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class UF {
    // 记录连通分量
    private int count;
    // 节点 x 的父节点是 parent[x]
    private int[] parent;

    /* 构造函数,n 为图的节点总数 */
    public UF(int n) {
        // 一开始互不连通
        this.count = n;
        // 父节点指针初始指向自己
        parent = new int[n];
        for (int i = 0; i < n; i++)
            parent[i] = i;
    }

    /* 其他函数 */
}

如果某两个节点被连通,则让其中的(任意)一个节点的根节点接到另一个节点的根节点上

img

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class UF {
    // 为了节约篇幅,省略上文给出的代码部分...

    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ)
            return;
        // 将两棵树合并为一棵
        parent[rootP] = rootQ;
        // parent[rootQ] = rootP 也一样
        count--; // 两个分量合二为一
    }

    /* 返回某个节点 x 的根节点 */
    private int find(int x) {
        // 根节点的 parent[x] == x
        while (parent[x] != x)
            x = parent[x];
        return x;
    }

    /* 返回当前的连通分量个数 */
    public int count() { 
        return count;
    }
}

这样,如果节点 pq 连通的话,它们一定拥有相同的根节点

img

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

1
2
3
4
5
6
7
8
9
class UF {
    // 为了节约篇幅,省略上文给出的代码部分...

    public boolean connected(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        return rootP == rootQ;
    }
}

至此,Union-Find 算法就基本完成了。是不是很神奇?竟然可以这样使用数组来模拟出一个森林,如此巧妙的解决这个比较复杂的问题!

那么这个算法的复杂度是多少呢?我们发现,主要 API connectedunion 中的复杂度都是 find 函数造成的,所以说它们的复杂度和 find 一样。

find 主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。我们可能习惯性地认为树的高度就是 logN,但这并不一定。logN 的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,树的高度最坏情况下可能变成 N

img

所以说上面这种解法,find , union , connected 的时间复杂度都是 O(N)。这个复杂度很不理想的,你想图论解决的都是诸如社交网络这样数据规模巨大的问题,对于 unionconnected 的调用非常频繁,每次调用需要线性时间完全不可忍受。

问题的关键在于,如何想办法避免树的不平衡呢?只需要略施小计即可。

#三、平衡性优化

我们要知道哪种情况下可能出现不平衡现象,关键在于 union 过程:

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class UF {
    // 为了节约篇幅,省略上文给出的代码部分...

    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ)
            return;
        // 将两棵树合并为一棵
        parent[rootP] = rootQ;
        // parent[rootQ] = rootP 也可以
        count--;
    }
}

我们一开始就是简单粗暴的把 p 所在的树接到 q 所在的树的根节点下面,那么这里就可能出现「头重脚轻」的不平衡状况,比如下面这种局面:

img

长此以往,树可能生长得很不平衡。我们其实是希望,小一些的树接到大一些的树下面,这样就能避免头重脚轻,更平衡一些。解决方法是额外使用一个 size 数组,记录每棵树包含的节点数,我们不妨称为「重量」:

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class UF {
    private int count;
    private int[] parent;
    // 新增一个数组记录树的“重量”
    private int[] size;

    public UF(int n) {
        this.count = n;
        parent = new int[n];
        // 最初每棵树只有一个节点
        // 重量应该初始化 1
        size = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
            size[i] = 1;
        }
    }
    /* 其他函数 */
}

比如说 size[3] = 5 表示,以节点 3 为根的那棵树,总共有 5 个节点。这样我们可以修改一下 union 方法:

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class UF {
    // 为了节约篇幅,省略上文给出的代码部分...

    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ)
            return;
        
        // 小树接到大树下面,较平衡
        if (size[rootP] > size[rootQ]) {
            parent[rootQ] = rootP;
            size[rootP] += size[rootQ];
        } else {
            parent[rootP] = rootQ;
            size[rootQ] += size[rootP];
        }
        count--;
    }
}

这样,通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在 logN 这个数量级,极大提升执行效率。

此时,find , union , connected 的时间复杂度都下降为 O(logN),即便数据规模上亿,所需时间也非常少。

#四、路径压缩

这步优化虽然代码很简单,但原理非常巧妙。

其实我们并不在乎每棵树的结构长什么样,只在乎根节点

因为无论树长啥样,树上的每个节点的根节点都是相同的,所以能不能进一步压缩每棵树的高度,使树高始终保持为常数?

img

这样每个节点的父节点就是整棵树的根节点,find 就能以 O(1) 的时间找到某一节点的根节点,相应的,connectedunion 复杂度都下降为 O(1)。

要做到这一点主要是修改 find 函数逻辑,非常简单,但你可能会看到两种不同的写法。

第一种是在 find 中加一行代码:

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class UF {
    // 为了节约篇幅,省略上文给出的代码部分...

    private int find(int x) {
        while (parent[x] != x) {
            // 这行代码进行路径压缩
            parent[x] = parent[parent[x]];
            x = parent[x];
        }
        return x;
    }
}

这个操作有点匪夷所思,看个 GIF 就明白它的作用了(为清晰起见,这棵树比较极端):

img

用语言描述就是,每次 while 循环都会让部分子节点向上移动,这样每次调用 find 函数向树根遍历的同时,顺手就将树高缩短了。

路径压缩的第二种写法是这样:

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class UF {
    // 为了节约篇幅,省略上文给出的代码部分...
    
    // 第二种路径压缩的 find 方法
    public int find(int x) {
        if (parent[x] != x) {
            parent[x] = find(parent[x]);
        }
        return parent[x];
    }
}

我一度认为这种递归写法和第一种迭代写法做的事情一样,但实际上是我大意了,有读者指出这种写法进行路径压缩的效率是高于上一种解法的。

这个递归过程有点不好理解,你可以自己手画一下递归过程。我把这个函数做的事情翻译成迭代形式,方便你理解它进行路径压缩的原理:

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
// 这段迭代代码方便你理解递归代码所做的事情
public int find(int x) {
    // 先找到根节点
    int root = x;
    while (parent[root] != root) {
        root = parent[root];
    }
    // 然后把 x 到根节点之间的所有节点直接接到根节点下面
    int old_parent = parent[x];
    while (x != root) {
        parent[x] = root;
        x = old_parent;
        old_parent = parent[old_parent];
    }
    return root;
}

这种路径压缩的效果如下:

img

比起第一种路径压缩,显然这种方法压缩得更彻底,直接把一整条树枝压平,一点意外都没有。就算一些极端情况下产生了一棵比较高的树,只要一次路径压缩就能大幅降低树高,从 摊还分析 的角度来看,所有操作的平均时间复杂度依然是 O(1),所以从效率的角度来说,推荐你使用这种路径压缩算法。

另外,如果使用路径压缩技巧,那么 size 数组的平衡优化就不是特别必要了。所以你一般看到的 Union Find 算法应该是如下实现:

java 🟢cpp 🤖python 🤖go 🤖javascript 🤖

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class UF {
    // 连通分量个数
    private int count;
    // 存储每个节点的父节点
    private int[] parent;

    // n 为图中节点的个数
    public UF(int n) {
        this.count = n;
        parent = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }
    }
    
    // 将节点 p 和节点 q 连通
    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        
        if (rootP == rootQ)
            return;
        
        parent[rootQ] = rootP;
        // 两个连通分量合并成一个连通分量
        count--;
    }

    // 判断节点 p 和节点 q 是否连通
    public boolean connected(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        return rootP == rootQ;
    }

    public int find(int x) {
        if (parent[x] != x) {
            parent[x] = find(parent[x]);
        }
        return parent[x];
    }

    // 返回图中的连通分量个数
    public int count() {
        return count;
    }
}

Union-Find 算法的复杂度可以这样分析:构造函数初始化数据结构需要 O(N) 的时间和空间复杂度;连通两个节点 union、判断两个节点的连通性 connected、计算连通分量 count 所需的时间复杂度均为 O(1)。

到这里,相信你已经掌握了 Union-Find 算法的核心逻辑,总结一下我们优化算法的过程:

1、用 parent 数组记录每个节点的父节点,相当于指向父节点的指针,所以 parent 数组内实际存储着一个森林(若干棵多叉树)。

2、用 size 数组记录着每棵树的重量,目的是让 union 后树依然拥有平衡性,保证各个 API 时间复杂度为 O(logN),而不会退化成链表影响操作效率。

3、在 find 函数中进行路径压缩,保证任意树的高度保持在常数,使得各个 API 时间复杂度为 O(1)。使用了路径压缩之后,可以不使用 size 数组的平衡优化。